Multimode Hybrid Geometric Calibration of Spaceborne SAR Considering Atmospheric Propagation Delay

نویسندگان

  • Ruishan Zhao
  • Guo Zhang
  • Mingjun Deng
  • Fan Yang
  • Zhenwei Chen
  • Yuzhi Zheng
چکیده

The atmospheric propagation delay of radar signals is a systematic error that occurs in the atmospheric environment, and is a key issue in the high-precision geometric calibration of spaceborne SAR. A multimode hybrid geometric calibration method for spaceborne SAR that considers the atmospheric propagation delay is proposed in this paper. Error sources that affect the accuracy of the geometric calibration were systematically analyzed. Based on correction of the atmospheric propagation delay, a geometric calibration model for spaceborne SAR was established. The high precision geometric calibration scheme for spaceborne SAR was explored by considering the pulse-width and bandwidth of the signal. A series of experiments were carried out based on high-resolution Yaogan 13 (YG-13) SAR satellite data and ground control data. The experimental results demonstrated that the proposed method is effective. The plane positioning accuracy of YG-13 in stripmap mode without control points is better than 3 m, and the accuracy of the sliding spotlight mode is better than 1.5 m.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Calibration and Accuracy Verification of the GF-3 Satellite

The GF-3 satellite is the first multi-polarization synthetic aperture radar (SAR) imaging satellite in China, which operates in the C band with a resolution of 1 m. Although the SAR satellite system was geometrically calibrated during the in-orbit commissioning phase, there are still some system errors that affect its geometric positioning accuracy. In this study, these errors are classified in...

متن کامل

Improved Knowledge of SAR Geometry through Atmospheric Modelling

Satellites observing and measuring the Earth’s surface with electromagnetic waves are subject to atmospheric path delays. These atmospheric effects on radar signal propagation modify the signal velocity and direction and can be considered by simple modeling. In order to increase the geolocation accuracy of spaceborne SAR applications we developed a software tool that accounts for atmospheric pa...

متن کامل

Estimation of Atmospheric Path Delays in TerraSAR-X Data using Models vs. Measurements

Spaceborne synthetic aperture radar (SAR) measurements of the Earth's surface depend on electromagnetic waves that are subject to atmospheric path delays, in turn affecting geolocation accuracy. The atmosphere influences radar signal propagation by modifying its velocity and direction, effects which can be modeled. We use TerraSAR-X (TSX) data to investigate improvements in the knowledge of the...

متن کامل

Evaluation of Geometric and Atmospheric Doppler for GNSS-RO Payloads

To reduce the sampling rate in global navigation satellite system (GNSS)-radio occultation receivers, it is essential to establish a suitable estimation of Doppler frequency from the received signal in the satellite onboard receiver. This receiver is usually located on low earth orbit satellite and receives GNSS satellites signal in the occultation situation. The occurred Doppler on the signal ...

متن کامل

Initial Polarimetric Calibration of PALSAR

This paper discusses an initial polarimetric calibration of ALOS PALSAR. ALOS was launched on January 24, 2006. PALSAR, which is one of ALOS three sensors, is the first spaceborne L−band polarimetric synthetic aperture radar. It is expected that PALSAR polarimetric data is used for many applications such as agriculture, forestry, ocean, natural disasters etc. Thus, polarimetric calibration is a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017